
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Architecture - Room Persistence Library and
SQLite.

 Using Room DB with Kotlin Coroutines and
Flows.

© 2024 Arthur Hoskey. All
rights reserved.

SQLite

SQLite

 SQLite is a relational database

◦ Open-source

◦ Standards-compliant

◦ Lightweight (little configuration required)

◦ Single-tier (client, server, db all on the same machine)

 SQLite is implemented as a compact C library rather than a separate
ongoing process

◦ Note: Oracle and SQL Server both run in a separate process.

 Since SQLite is a library, it is integrated as part of the application that is
using it. This type setup has the following effects:

◦ Reduces external dependencies

◦ Minimizes latency

◦ Simplifies transaction locking and synchronization.

© 2024 Arthur Hoskey. All
rights reserved.

Room Persistence Library

Room Persistence Library

 Room Persistence Library - One of the new Android
Architecture Components. Link:

https://developer.android.com/jetpack/docs/guide

 Makes it easier to create/access an SQLite database.

 Both the Room Persistence Library and an SQLite database are
used to store data locally.

 The Room library is better because it hides some messy code that
is generally needed to setup an SQLite database.

 Uses of local storage:

◦ Save user settings.

◦ Save copies of remote data (data stored in the cloud).

 If data is coming from a web service (remote data) we might be
able to store it locally in a database. We can check the local
database first for the data BEFORE running a web service call.
This is good because web service calls are slow.

© 2024 Arthur Hoskey. All
rights reserved.

https://developer.android.com/jetpack/docs/guide

Object Relational Mapping (ORM)

 Object-Relational Mapping (ORM) tools allow you to
work with a relational database using objects inside of an
object-oriented program.

 Room Persistence Library is an object relational mapping
tool.

 There are ORM tools for other languages.

 For example: Entity Framework (.NET), Hibernate (Java),
NHibernate(.NET), Sequelize (Node.js), SQLAlchemy (Python),
Doctrine (PHP).

© 2024 Arthur Hoskey. All
rights reserved.

Object-
oriented
program

ORM
Framework

Relational
Database

High-Level Architecture and Room

High-Level Architecture and Room

© 2024 Arthur Hoskey. All
rights reserved.

DetailScreen
ViewModel

Repository
(holds the app's data)

ListScreen
ViewModel

ListScreen DetailsScreen

AnotherScreen
ViewModel

AnotherScreen

Other Data
Sources

(Firestore, API,
file, etc..)

UI Layer

(screens and

ViewModels)

Data Layer

(repository

and data

sources)
RoomDatabase

Entity
Entity

Entity

SQLite

DAO

Room – Gradle Dependencies

 Use following dependencies in build.gradle (lower-
level file, app).

plugins {

 //other plugins here…

 id("kotlin-kapt")

}

dependencies {

 // Other dependencies here

 var roomVersion = "2.6.1"

 implementation("androidx.room:room-runtime:$roomVersion")

 implementation("androidx.room:room-ktx:$roomVersion")

 kapt("androidx.room:room-compiler:$roomVersion")

}

Versions change quickly in Android. Check the following link to get the latest dependency
version:

https://developer.android.com/jetpack/androidx/releases/room

© 2024 Arthur Hoskey. All
rights reserved.

IMPORTANT

Add the "Kotlin-kapt" plugin. It

should be added to the end of the

plugins block at the top of the file.

https://developer.android.com/jetpack/androidx/releases/room

Room – import Statement

 Make sure to include the Room import statement as
necessary in your Kotlin code.

import androidx.room.*

© 2024 Arthur Hoskey. All
rights reserved.

Room Database Components

Three Major Components in a Room Database
 RoomDatabase. Main access point to the database.

 Entity Class. Represents a table in the database.

 Data Access Object (DAO). Contains methods used for
accessing the database.

 Taken from: https://developer.android.com/training/data-
storage/room/

© 2024 Arthur Hoskey. All
rights reserved.

Only need to define the

above three

components.

You do NOT need to

make any changes to

the application manifest

https://developer.android.com/training/data-storage/room/
https://developer.android.com/training/data-storage/room/

Entity Class Maps to Relational
Table

 A Room entity class maps to a table in a relational DB (a Room entity
class is just a normal Kotlin class).

 The member variables in a Room entity class correspond to the columns
in a relational database table.

 Here are the mappings:
◦ uid (User class) corresponds to the Id column (User table)

◦ firstName (User class) corresponds to the FirstName column (User table)

◦ lastName (User class) corresponds to the LastName column (User table)

© 2024 Arthur Hoskey. All
rights reserved.

User Class
(normal Kotlin class)

uid: Int
firstName: String
lastName: String

Id FirstName LastName

User Table in Relational DB

Note: Class member variable names do

not need to match table column names.

Entity Class Maps to Relational
Table

 One instance of a Room entity class corresponds to a row in a relational
DB table.

 A one table SQL query returns a List of the entity class type (returns a list
of the User class in this example).

 Check link for more complicated querying scenarios:

https://developer.android.com/training/data-storage/room/accessing-data

© 2024 Arthur Hoskey. All
rights reserved.

List<User>

uid(100)
firstName("Rose")
lastName("Diaz")

User Table

uid(101)
firstName("Mateo")
lastName("Lopez")

Id FirstName LastName

100 Rose Diaz

101 Mateo Lopez

SQL query
returns

List<User>

https://developer.android.com/training/data-storage/room/accessing-data

Room Mappings

 The example below has two entity classes.

© 2024 Arthur Hoskey. All
rights reserved.

RoomDatabase Class

List<User>

User class instance

User class instance

Relational DB

User Table

List<Order>

Order class instance

Order class instance

Order Table

Id FirstName LastName

100 Rose Diaz

101 Mateo Lopez

UserId Amount

100 49.99

100 25.50

101 125.00
Order class instance

RoomDatabase Setup Overview

Setup RoomDatabase

 Need to do the following to setup the RoomDatabase:

1. Create entity classes for each table (entity classes
mirror the DB tables, one entity class per table).

2. Define a Data Access Object interface.

3. Define an abstract database class.

4. Create the database.

© 2024 Arthur Hoskey. All
rights reserved.

1. Create Entity Class

1. Create Entity class

 Describes one table in the database.

 Create a normal Kotlin class decorated with annotations.

 Use annotations such as @Entity, @PrimaryKey, and @ColumnInfo.
 Taken From: https://developer.android.com/training/data-storage/room/defining-data

@Entity

data class User(

 @PrimaryKey val uid: Int,

 @ColumnInfo(name = "first_name") val firstName: String?,

 @ColumnInfo(name = "last_name") val lastName: String?

)

© 2024 Arthur Hoskey. All
rights reserved.

This class will create a

table named User

Indicates that class can be used as an entity. Use

@Entity(tableName="myTableName") to link to a specific table name.

Column in db should be named

“first_name” (not firstName).

Column in db should be named

“last_name” (not lastName).

Column is primary key (use @PrimaryKey(autoGenerate = true)

to automatically generate ids)

Note: If you leave out a ColumnInfo annotation specifying the name

it will use the variable name for the column name (see uid above).

? Allows null

value (cannot use

? if the column is

a primary key)

https://developer.android.com/training/data-storage/room/defining-data

2. Data Access Object (DAO)

 An interface.

 Contains methods used to access the database.

 The implementations for the methods of this interface
are created automatically for you behind the scenes.

 A big advantage of writing SQL statements as part of
DAO annotations is that the compiler will make sure that
the SQL is syntactically correct. If the SQL is not correct a
compile error will be issued. Program will not even run. Not
the case when using SQLite directly.

 Here is a sample Data Access Object…

© 2024 Arthur Hoskey. All
rights reserved.

2. Data Access Object

2. Data Access Object

 DAO interface that uses flows and suspending functions.

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun selectAll() : Flow<List<User>>

 @Insert

 suspend fun insert(user: User)

 @Query("DELETE FROM user")

 suspend fun deleteAll()

}

© 2024 Arthur Hoskey. All
rights reserved.

Uses a Flow

(a Flow uses coroutines

internally so selectAll does not

need the suspend keyword)

Both functions are

suspend so they

should be run on a

coroutine

Annotation indicating that this

interface is a data access object

The compiler WILL check the

syntax of SQL statements

inside of the annotations!!!

3. Define Abstract Database Class

3. Define Abstract Database Class

 The database class is abstract (create a Kotlin class).

 The room library will create a concrete implementation of
this abstract database class.

 Entities are passed into the Database annotation.

 The DAO can be retrieved using the abstract method on
the Database class.

@Database(entities = [User::class], version = 1)

abstract class UserDatabase : RoomDatabase() {

 abstract fun userDao(): UserDao?

}

© 2024 Arthur Hoskey. All
rights reserved.

The Database annotation must

be given the entities (tables)

userDao is an abstract method

that returns the DAO instance

User entity class

Inherit from

RoomDatabase

4. Create the DB - Getting the DB
Instance

4. Create the Database

 Use the following code to get a database instance:

// Get the database

val db = Room.databaseBuilder(

 applicationContext,

 UserDatabase::class.java, "user"

).build()

© 2024 Arthur Hoskey. All
rights reserved.

This code will NOT work if run on the

main thread (UI thread)

See next slide for details…

You can use whatever name you

want for the database. You do

not have to use "user".

DB Operation Running on Main
Thread (BAD)

Run on Main Thread

fun dbOperation()

{

 // Code for some DB

 // operation (select,

 // insert, etc…)

}

1. Main calls

dbOperation

synchronously

Run on Main Thread

fun MainGUI()

{

 dbOperation()

}

MainGUI cannot

do anything until

dbOperation

finishes

2. dbOperation runs

(MainGUI is blocked)

3. dbOperation

returns and main

continues

execution

© 2024 Arthur Hoskey. All
rights reserved.

Wait for dbOperation to

finish

The user will NOT be able to

interact with the GUI while the

dbOperation code is running!

GUI HANGS, VERY BAD

USER EXPERICENCE!

MainGUI function cannot

update GUI while waiting

for dbOperation (user

cannot interact)

4. Create the DB Room and
Threading

 By default, if you try to run a database query/statement on the main
(UI) thread the program will compile and execute but you will get the
following runtime error:

Caused by: java.lang.IllegalStateException: Cannot access database on the
main thread since it may potentially lock the UI for a long period of time.

 This error is thrown because there is the potential to lock the UI
screen (user cannot interact/UI hangs) if the operation is long.

 Database access MUST be done on a background thread (not
the UI thread).

 You can run code on a background thread but unfortunately, we
have not covered it yet.

 Here is a dangerous workaround:
val db = Room.databaseBuilder(

 applicationContext,

 UserDatabase::class.java, "user"

).allowMainThreadQueries().build()

© 2024 Arthur Hoskey. All
rights reserved.

This is a

bad fix!!

4. Create DB – Run DB Creation
Code Inside a Kotlin Coroutine

 Create the database inside a Kotlin coroutine on another thread.

 Room.databaseBuilder needs the application context as a parameter.

 Here are examples (run this code in init block for a view model):
runBlocking(Dispatchers.IO) {

 val db = Room.databaseBuilder(

 applicationContext,

 UserDatabase::class.java, "user"

).build()

}

val coroutineScope = CoroutineScope(Dispatchers.IO)

coroutineScope.launch {

 val db = Room.databaseBuilder(

 applicationContext,

 UserDatabase::class.java, "user"

).build()

}

© 2024 Arthur Hoskey. All
rights reserved.

Run database creation code inside a coroutine. The

application context must be passed as a parameter.

If in a view model, pass the application in through a

primary constructor and use that as the context.

Could also create a coroutine

scope. For a view model this

can be run in the init block.

Use runBlocking for DB creation if other code

needs the database to be created before it can

do anything.

Note: If the db instance is going to be a member of

a class remove "val" and declare db as a member

variable elsewhere (like in a view model).

DB Operation Running on a
Coroutine (GOOD)

Run in a Coroutine

void dbOperation()

{

 // Code for some DB

 // operation (select,

 // insert, etc…)

}

1. Main calls

dbOperation on

a coroutine

Run on Main Thread

fun MainGUI() {

 Create coroutine,

 call dbOperation()

 on it

}

MainGUI

continues

immediately (does

not wait for

dbOperation to

return)

2. dbOperation runs

(MainGUI is NOT blocked)

© 2024 Arthur Hoskey. All
rights reserved.

The user can interact with the

GUI while dbOperation runs

(GUI not locked). Creates a

good user experience.

Keep going!

Do not wait for

dbOperation to

finish

MainGUI function does not

wait and keeps updating GUI

(user can interact)

Querying and Inserting Data

 Now on to executing queries and inserting
data…

© 2024 Arthur Hoskey. All
rights reserved.

Inserting Data Into the Database

Inserting Data Into the Database

 Create a normal instance of the entity class and populate it like
you normally would (the User class in this example).

 Assumes the insert is being called in a view model.

 Use a different coroutine scope if not calling in a view model.

@Dao

interface UserDao {

@Insert

 suspend fun insert(user: User)

}

viewModelScope.launch {

 val u = User(100, "Rose", "Diaz")

 db.userDao()!!.insert(u)

}

© 2024 Arthur Hoskey. All
rights reserved.

Create a normal instance of

User (the entity class)

Call insert on the userDao

passing in the User instance

There must be an insert method that takes one

User as a parameter on the UserDao interface

(code below will not work if it is missing)

Must call insert in a coroutine scope (change scope if not in view model)

Getting Data From the Database

Getting Data From the Database

 Call methods on the data access object (DAO).

 This code assumes you are running queries from a view model.

 The code below assumes that you added a selectAll method
prototype to the DAO.

var userList = mutableStateOf<List<User>>(emptyList())

 private set

init {

 // other code here…

 viewModelScope.launch {

 db.userDao()!!.selectAll()!!.flowOn(Dispatchers.IO).collect {

 currentUserList ->

 userList.value = currentUserList

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Put the current List<User> that comes

through the flow into the userList state

member. This will trigger the screen

composable to do a recomposition

(value changing in state variable)

Member variable

of view model

Must call selectAll in a coroutine scope

(change scope if not in view model)

MainScreen that Uses Flow

 ViewModel that uses flows and suspending functions.

@Composable

fun MainScreen(modifier: Modifier) {

 val context = LocalContext.current

 val viewModel = viewModel { MainScreenViewModel(context.applicationContext as Application) }

 val userList = viewModel.userList.value

 // Code to display the users goes here

}

© 2024 Arthur Hoskey. All
rights reserved.

Assumes MainScreenViewModel

has been defined

Get the user list from

the view model

Get the

context

Pass in the default Application

instance (get it from the context)

Setup Room DB in a Repository
Class

 Now on to setting up a repository to
access a Room DB…

© 2024 Arthur Hoskey. All
rights reserved.

Repository with Flow and
Coroutines

 Repository that uses flows and suspending functions.
class UserRepository(

 var userDatabase: UserDatabase

) {

 var userDao: UserDao

 init {

 userDao = userDatabase.userDao()!!

 }

 suspend fun getUsers() = userDao.selectAll()

 suspend fun addUser(user: User) {

 userDao.insert(user)

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Need to make both

functions suspend

because they are both

calling suspend

functions on the DAO

ViewModel with Flow and
Coroutines

 ViewModel that uses flows and suspending functions.
class MainScreenViewModel(

 var userRepository: UserRepository

) : ViewModel()

{

 var userListStateFlow = MutableStateFlow<List<User>>(emptyList())

 private set

 init {

 viewModelScope.launch(Dispatchers.IO) {

 userRepository.getUsers().flowOn(Dispatchers.IO).collect

 { currentUserList ->

 userListStateFlow.value = currentUserList

 }

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Calls getUsers in a coroutine scope

(coroutine scope can call suspend functions)

Put the current List<User> that comes

through the flow into userListStateFlow

member. This will trigger the screen

composable to do a recomposition

(value changing in state variable)

Gets data immediately when

the view model starts

Custom Application Class

 Custom Application class to create the Repository and
database instances.

class MyApp : Application() {

 companion object {

 lateinit var userRepository: UserRepository

 }

 override fun onCreate() {

 super.onCreate()

 runBlocking(Dispatchers.IO) {

 val userDatabase = Room.databaseBuilder(

 applicationContext,

 UserDatabase::class.java, "user"

).build()

 }

 userRepository = UserRepository(userDatabase)

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Call DB builder code

in onCreate

MainScreen that Uses Flow

 ViewModel that uses flows and suspending functions.

@Composable

fun MainScreen(modifier: Modifier) {

 val viewModel = viewModel { MainScreenViewModel(MyApp.userRepository) }

 val userList = viewModel.userListStateFlow.collectAsState().value

 // Code to display the users goes here

}

© 2024 Arthur Hoskey. All
rights reserved.

Get the

ViewModel

Get the user list from

the view model

collectAsState converts the

StateFlow into a State object

Data Access Object Query without
Flows

 Now on to executing queries without using
a flow…

© 2024 Arthur Hoskey. All
rights reserved.

Data Access Object Query without
Flows

 Queries can return normal lists (not flows).

 Important! The code below is not the suggested approach
moving forward (flows should be used).

 This code will NOT automatically notify the app when data
changes in the database.

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getAll(): List<User>

}

© 2024 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: SQLite
	Slide 4: Room Persistence Library
	Slide 5: Object Relational Mapping (ORM)
	Slide 6: High-Level Architecture and Room
	Slide 7: Room – Gradle Dependencies
	Slide 8: Room – import Statement
	Slide 9: Room Database Components
	Slide 10: Entity Class Maps to Relational Table
	Slide 11: Entity Class Maps to Relational Table
	Slide 12: Room Mappings
	Slide 13: RoomDatabase Setup Overview
	Slide 14: 1. Create Entity Class
	Slide 15: 2. Data Access Object
	Slide 16: 2. Data Access Object
	Slide 17: 3. Define Abstract Database Class
	Slide 18: 4. Create the DB - Getting the DB Instance
	Slide 19: DB Operation Running on Main Thread (BAD)
	Slide 20: 4. Create the DB Room and Threading
	Slide 21: 4. Create DB – Run DB Creation Code Inside a Kotlin Coroutine
	Slide 22: DB Operation Running on a Coroutine (GOOD)
	Slide 23: Querying and Inserting Data
	Slide 24: Inserting Data Into the Database
	Slide 25: Getting Data From the Database
	Slide 26: MainScreen that Uses Flow
	Slide 27: Setup Room DB in a Repository Class
	Slide 28: Repository with Flow and Coroutines
	Slide 29: ViewModel with Flow and Coroutines
	Slide 30: Custom Application Class
	Slide 31: MainScreen that Uses Flow
	Slide 32: Data Access Object Query without Flows
	Slide 33: Data Access Object Query without Flows
	Slide 34: End of Slides

